Self-avoiding walks and trails on the 3.12 lattice

نویسندگان

  • Anthony J. Guttmann
  • Robert Parviainen
  • Andrew Rechnitzer
چکیده

We find the generating function of self-avoiding walks and trails on a semi-regular lattice called the 3.122 lattice in terms of the generating functions of simple graphs, such as self-avoiding walks, polygons and tadpole graphs on the hexagonal lattice. Since the growth constant for these graphs is known on the hexagonal lattice we can find the growth constant for both walks and trails on the 3.122 lattice. A result of Watson [13] then allows us to find the generating function and growth constant of neighbour-avoiding walks on the covering lattice of the 3.122 lattice which is tetravalent. A mapping into walks on the covering lattice allows us to obtain improved bounds on the growth constant for a range of lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices

We study self-avoiding and neighbour-avoiding walks and lattice trails on two semiregular lattices, the (3.122) lattice and the (4.82) lattice. For the (3.122) lattice we find the exact connective constant for both self-avoiding walks, neighbour-avoiding walks and trails. For the (4.82) lattice we generate long series which permit the accurate estimation of the connective constant for self-avoi...

متن کامل

Collapse transition of self-avoiding trails on the square lattice

The collapse transition of an isolated polymer has been modelled by many different approaches, including lattice models based on self-avoiding walks and self-avoiding trails. In two dimensions, previous simulations of kinetic growth trails, which map to a particular temperature of interacting self-avoiding trails, showed markedly different behaviour for what was argued to be the collapse transi...

متن کامل

1 1 O ct 2 00 4 Self - avoiding walks and trails on the 3 . 12 2 lattice Anthony

We find the generating function of self-avoiding walks and trails on a semi-regular lattice called the 3.122 lattice in terms of the generating functions of simple graphs, such as self-avoiding walks, polygons and tadpole graphs on the hexagonal lattice. Since the growth constant for these graphs is known on the hexagonal lattice we can find the growth constant for both walks and trails on the ...

متن کامل

Self-avoiding walks and trails on the 3.122 lattice

We find the generating function of self-avoiding walks (SAWs) and trails on a semi-regular lattice called the 3.122 lattice in terms of the generating functions of simple graphs, such as SAWs, self-avoiding polygons and tadpole graphs on the hexagonal lattice. Since the growth constant for these graphs is known on the hexagonal lattice we can find the growth constant for both walks and trails o...

متن کامل

Scaling of Self-Avoiding Walks and Self-Avoiding Trails in Three Dimensions

Motivated by recent claims of a proof that the length scale exponent for the end-to-end distance scaling of self-avoiding walks is precisely 7/12 = 0.5833 . . ., we present results of large-scale simulations of self-avoiding walks and self-avoiding trails with repulsive contact interactions on the hypercubic lattice. We find no evidence to support this claim; our estimate ν = 0.5874(2) is in ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004